Soft and biological matter

In my research I use computer simulation and theory to study soft and biological matter. Compared to the usual domains of physics, here the constituent particles are relatively large and/or the interaction forces are relatively weak. Examples include liquid crystals, biological membranes, cosmetics and pharmaceuticals, paints, milk, radioactive waste… .

Tissue growth mechanics: I’ve recently started at the Crick Institute, London, where my current project is on the mechanics of tissue growth.

Membrane biophysics: I worked at Georgetown University with Peter Olmsted, looking at the phase behaviour of lipid membranes, and am an associate member of the EPSRC CAPITALS project. This paper and follow-ups introduce the rich phase diagrams and kinetics governing domain formation in the coupled leaflets of a bilayer. We recently collaborated with Philip Fowler (Oxford) on this paper, and we collaborate with the experimentalist Simon Connell (Leeds).

Colloid polydispersityColloidal phase transitions and polydispersity: My PhD research with Mike Evans focused on colloids, particularly kinetics in polydisperse systems. Our latest paper develops measurement techniques for the complex phase behaviour of these systems, which are essentially “infinite mixtures” of many different-sized, shaped, or charged particles. We have also studied the effect of metastable states on crystal growth, providing the first particle-simulation of the fascinating “boiled-egg” mechanism.

Philosophy of science (undergraduate)

A third of my undergraduate degree was philosophy; this is responsible for a disappointing ignorance of astrophysics, in which I took no modules at all. The philosophy of science is, however, extremely worthwhile and often under-appreciated within science itself. It’s also a natural preparation for good scientific communication.


3 thoughts on “Research”

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: